Influência dos textos de notícias na queda de preços no mercado de ações brasileiro

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Duarte, Juvenal José
Orientador(a): González, Sahudy Montenegro lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus Sorocaba
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC-So
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/12025
Resumo: Forecasting financial losses and making decisions to avoid or reduce them has been a challenge for every investor. On one hand, due to the availability of data and its simple implementation, technical analysis methods have been quickly gaining supporters. On the other hand, modern computers processing power together with advances in text mining provides the opportunity to explore the investor’s behaviors in new data types: textual. This research evaluates the relationship between the Brazilian stock market and news published on national midia, focusing on automatic search for patterns related to down movements using machine learning algorithms. Six experiments were performed to analyze the possibility of predicting price falls automatically, followed by case studies in the search of explanations from the classifiers that justify the predictions.The results show that text mining based approaches overcome traditional strategies when forecasting losses, but the underlying patterns understanding is limited due to the complexity of the classifiers and high dimensional vocabulary.