Sistema embarcado reconfigurável de forma estática por programação genética utilizando hardware evolucionário híbrido

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Almeida, Manoel Aranda de
Orientador(a): Pedrino, Emerson Carlos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/8000
Resumo: The use of technology based on Field Programmable Gate Arrays (FPGAs), a reconfigurable technology, has become a frequent object of study. This technique is feasible and a promising application in the development of embedded systems, however, the difficulty in finding a flexible and efficient way to perform such an application is their bigger problem. In this work, a virtual and reconfigurable architecture (AVR) in FPGA for hardware applications is presented using a Genetic Programming Software on the development of an optimal reconfiguration for this AVR, in order to build a hardware capable of performing a given task in an embedded system. This proposal is a simple, flexible and efficient way to achieve appropriate applications in embedded systems, when compared to other reconfigurable hardware techniques. The representation of phenotype of the proposed evolutionary system is based on a bi-dimensional network function elements (EF). The GPLAB tool for MATLAB is used in Genetic Programming, and the solution found by this procedure is converted into a memory mapping to represent the best solution, where it is used to reconfigure the hardware. In the tests, GPLAB found results for logic circuits in a few generations, and for image filters containing efficient solutions, where there was little hardware occupation, especially memory, in the cases this has been presented, with a reduced chromosome size, shows a proposal efficiency.