Classificação de visada e mitigação de erros de estimativa de distância em sistemas UWB

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Lima, Danilo Souza
Orientador(a): Hernandes, André Carmona lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica - PPGEE
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
UWB
TWR
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/20515
Resumo: This master's thesis investigates the classification of line-of-sight (LOS) and non-line-of-sight (NLOS) conditions and their impact on distance measurement accuracy in Ultra-Wideband (UWB) positioning systems. The focus of the research was to develop and validate a machine learning model capable of dynamically classifying LOS and NLOS conditions to adjust the system's parameters for error mitigation. This involved the design of custom hardware and software to conduct extensive tests under various simulated environmental conditions, mirroring real-world complexities. The results demonstrated that the machine learning model significantly enhanced measurement accuracy, reducing average distance errors from over 10 centimeters in baseline conditions to under 3 centimeters in optimized setups. The implications of these findings underscores the potential of adaptive learning models to improve the reliability and operational efficiency of UWB systems, particularly in complex indoor environments. The model's ability to adapt to changing conditions and accurately classify signal disruptions due to physical obstructions provides a critical improvement over traditional static modeling approaches. This research lays the groundwork for future advancements in UWB technology, suggesting that integrating machine learning into UWB systems can lead to more robust and accurate indoor positioning solutions that are crucial for industries like logistics, autonomous navigation, and smart building management.