Utilização de técnicas bayesianas em modelos de regressão de Poisson para dados de contagem longitudinais e dados de contagem com medidas repetidas apresentando excesso de zeros

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Tsuchiya, Nilton
Orientador(a): Achcar, Jorge Alberto lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4519
Resumo: In medical and biological researches we often .nd count data. For longitudinal count data, usual Poisson regression models, assuming independence among observations, are not applicable because of the correlation of these measures. This work presents hierarchical Bayesian models considering random e¤ects to analyze longitudinal count data. A Normal and a Gamma distribution are considered to these e¤ects besides the mixture of Normal distributions. We also present zero in.ated Poisson (ZIP) regression models for repeated measures. Markov Chain Monte Carlo (MCMC) is used to estimate the parameters. Keywords: Longitudinal Count Data; Poisson Regression Model; Zero In.ated Model; Hierarchical Model; Bayesian Analysis; MCMC Methods.