Produção recombinante e caracterização de duas cistatinas de cana-de-açúcar

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Miguel, Mariana Cardoso
Orientador(a): Silva, Flávio Henrique da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular - PPGGEv
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/5553
Resumo: Cystatins are reversible inhibitors of cysteine peptidases. The cystatins found in plants are called phytocystatins, and represent an independent subfamily of the cystatins superfamily. Some studies have reported significant pleiotropic effects for recombinant cystatins expressed in transgenic plants, notably including tolerance phenotypes against attack of herbivorous arthropods and pathogens, and against abiotic and biotic stresses. Besides, the recombinant sugarcane cystatin, CaneCPI-4, showed potential to inhibit development of melanoma cells. Thus, the study and knowledge about phytocystatins, become interesting from agricultural and medicinal point of view. The sugarcane genome project (SUCEST) allowed the identification of about 25 putative cystatins in this plant, which were gathered in 4 groups, by phylogenetic analysis. In this study, we propose a new classification for the putative cystatins found in the SUCEST database. Furthermore, we describe the heterologous expression, purification and characterization of two novel sugarcane cystatins, CaneCPI-5 and CaneCPI-6, which showed different inhibitory activities against human cathepsin B. While protein CaneCPI-6 was not able to inhibit this enzyme efficiently (Ki = 1,83 μM), the protein CaneCPI-5 showed a good inhibitory capacity against the same enzyme (Ki = 6,87 nM). The CaneCPI-5 cystatin was also analyzed against recombinant cathepsin L from the beetle Sphenophorus levis (rSl-CathL), and showed a good inhibitory capacity against this enzyme (Ki = 0,059 nM). Finally, both of proteins, CaneCPI-5 and CaneCPI-6, proved to be thermostable when kept at 100°C for 30 minutes.