Aprendizado supervisionado incremental de redes bayesianas para mineração de dados

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Yoshida, Murilo Lacerda
Orientador(a): Hruschka Júnior, Estevam Rafael lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/354
Resumo: The objective of this work is to introduce two algorithms for supervised Bayesian network incremental learning, AIP (Algorithm for simple Bayesian network numerical parameters supervised incremental learning) and ABC (Algorithm for Bayesian network supervised incremental learning in layers). In order to develop these algorithms we studied relevant works about the Bayesian networks concepts, the algorithms for supervised Bayesian network learning and the algorithms for incremental supervised Bayesian network learning. To improve the performance of the ABC algorithm, we studied the AD-Tree structure and implemented it on the algorithm. To measure the quality of the networks learned by the algorithms we used these networks learnt to classify a test set, resulting in the correct classification rate (ICC). To do that we studied the test set classification process and the propagation of evidences along the Bayesian network. The result of the studies is described on this work, along with the results and discussions about the experiments made with the introduced algorithms.