Modelos alternativos em filas M/G/1
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Estatística - PPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/ufscar/8693 |
Resumo: | The main aim of this work is to develop alternative queuing models to M/ G/l, in which arrivals follow a Poisson process, the total number of customers on the system and the total number of service channels are unknown. Our interest is just to observe the service channel that will offer the maximum or minimum service time. Wherefore, the service distributions are obtained from the composition of the Conwav-Maxwell-Poisson distribution truncated at zero, used to model the number of service channels, with the general distribution to the maximum and minimum service time. Thus, we obtain new distributions for service time, which are called Maximum-Conwav-Maxwell-Poisson-general, denoted by MAXCOMPG distribution, and Minimum-Conwav-Maxwell-Poisson-general, denoted by MINCOMPG distribution, consequently, we obtain the queue models M/MAXCOMPG/1 and M/MINCOMPG/ 1, respectively. As general distributions, we use the distributions exponential, Weibull and Birnbaum Saunders, To illustrate the proposed queue models, a simulation study is done and also real data are used. |