Modelos alternativos em filas M/G/1

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Prado, Silvia Maria
Orientador(a): Louzada Neto, Francisco lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/8693
Resumo: The main aim of this work is to develop alternative queuing models to M/ G/l, in which arrivals follow a Poisson process, the total number of customers on the system and the total number of service channels are unknown. Our interest is just to observe the service channel that will offer the maximum or minimum service time. Wherefore, the service distributions are obtained from the composition of the Conwav-Maxwell-Poisson distribution truncated at zero, used to model the number of service channels, with the general distribution to the maximum and minimum service time. Thus, we obtain new distributions for service time, which are called Maximum-Conwav-Maxwell-Poisson-general, denoted by MAXCOMPG distribution, and Minimum-Conwav-Maxwell-Poisson-general, denoted by MINCOMPG distribution, consequently, we obtain the queue models M/MAXCOMPG/1 and M/MINCOMPG/ 1, respectively. As general distributions, we use the distributions exponential, Weibull and Birnbaum Saunders, To illustrate the proposed queue models, a simulation study is done and also real data are used.