Sobre o modelo neural RuleNet e suas características simbólica e cooperativa.

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Figueira, Lucas Baggio
Orientador(a): Nicoletti, Maria do Carmo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/566
Resumo: Machine learning is an area of Artificial Intelligence that deals with methods and techniques for implementing automatic learning in computational systems. This research work investigates a machine learning neural model called RuleNet and its extension for fuzzy domains named Fuzzy RuleNet. Among the advantages of the RuleNet proposal are its simplicity, easiness and fast training as well as the way it represents the induced concept, which can be characterized as symbolic. This aspect makes RuleNet suitable for participating in cooperative systems. This research work investigates both the contribution of the RuleNet model as a stand alone learning technique as well as part of a cooperative system. It presents and discusses the results obtained in several experiments, evaluating RuleNet as a stand alone machine learning (versus two other machine learning methods, the ID3 and the NGE) and as part of a cooperative system, articulated to ID3 and to NGE.