Testes de superioridade para modelos de chances proporcionais com e sem fração de cura

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Teixeira, Juliana Cecília da Silva
Orientador(a): Cobre, Juliana lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/9688
Resumo: Studies that prove the superiority of a drug in relation to others already existing in the market are of great interest in clinical practice. Based on them the Brazilian National Agency of Sanitary Surveillance (ANVISA) grants superiority drugs registers which can cure faster or increase the probability of cure of patients, compared to standard treatment. It is of the utmost importance that hypothesis tests control the probability of type I error, that is, they control the probability that a non-superior treatment is approved for use; and also achieve the test power regulated with as few individuals as possible. Tests of hypotheses existing for this purpose or disregard the time until the event of interest occurrence (allergic reaction, positive effect, etc.) or are based on the proportional hazards model. However, in practice, the hypothesis of proportional hazards may not always be satisfied, as is the case of trials whose risks of the different study groups become equal over time. In this situation, the proportional odds survival model is more adequate for the adjustment of the data. In this work we developed and investigated two hypothesis tests for clinical trials of superiority, based on the comparison of survival curves under the assumption that the data follow the proportional survival odds model, one without the incorporation of cure fraction and another considering cure fraction. Several simulation studies are conducted to analyze the ability to control the probability of type I error and the value of the power of the tests when the data satisfy or not the assumption of the test for different sample sizes and two estimation methods of the quantities of interest. We conclude that the probability of type I error is underestimated when the data do not satisfy the assumption of the test and it is controlled when they satisfy, as expected. In general, we conclude that it is indispensable to satisfy the assumptions of superiority tests.