Influência de álcoois na síntese e propriedades das sílicas mesoporosas

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Alkimim, Isabella Pereira
Orientador(a): Cardoso, Dilson lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4162
Resumo: In recent years there has been growing interest in studies on the use of heterogeneous catalysts in the biodiesel production, since such materials have some advantages over homogeneous catalysts such as ease of separation of product generated and the possibility of being reused. Among these catalysts, it is important to emphasize the mesoporous molecular sieves, since they have some advantages that enable its catalytic application. This study aimed to synthesize spheres of hybrid silica, with mesoporous occluded by the driver structure (CTA-SiO2), and to investigate the influence of different alcohols in the properties of these materials and evaluate their catalytic activity in the transesterification reaction. The mesoporous silicas were synthesized with varying the length of the alkyl chain (C1-C3) and amount of alcohol in the reaction mixture. The silicas were characterized by different techniques, such as X-ray scattering at small angles (SAXS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis. The results showed that the structure and morphology of the mesoporous silica containing organic driver may be controlled during synthesis by varying alcohol content, leading to the formation of materials with different phases, levels of organization and morphology, with the best results obtained from the samples synthesized with methanol and ethanol. For the evaluation of activity and catalytic stability, hybrid silicas were tested in transesterification reaction between ethyl acetate and methanol. The materials showed activity, and when the pore structure is well organized, larger amount of catalytic sites is available resulting in higher conversions. Thus synthesized materials with lower amounts of alcohol had higher catalytic activity compared with other materials. Silicas synthesized showed little catalytic stability compared to successive uses in the transesterification reaction. Thus, materials synthesized with the use of smaller amounts of alcohol tended to stability in comparison to other samples. Part of the activity is due to the presence of basic species formed as a result of leaching of cations CTA+, promoting the reaction also in the homogeneous phase.