Comportamento elétrico de nanocompósitos baseados em copolímeros em bloco e nanotubos de carbono

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Santos, João Paulo Ferreira
Orientador(a): Bretas, Rosario Elida Suman lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/9254
Resumo: In this work conductive polymer nanocomposites (CPNs) based on block copolymers and multi walled carbon nanotubes (MWCNT) were obtained. Two of the copolymers were commercial: polystyrene-b-polybutadiene-b-polystyrene (SBS), and polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS). The other copolymer was synthesized: polystyrene-b-poly(vinylidene fluoride) (PS-b-PVDF). Three systems of block copolymer/MWCNT were then obtained and studied for specific purposes. The SBS/MWCNT was produced using two routes: the solution and melt mixing. The influence of the processing conditions on the structure and on the electrical conductivity of these nanocomposites were evaluated and compared. For the second system, SEBS/MWCNT, the aim was evaluate the influence of the grafting of MWCNT with PS on the conductivity of the nanocomposites. For the third system, PS-b-PVDF/MWCNT, the aim was to evaluate the influence of the polymer matrix on the conductivity of the nanocomposites. The nanocomposites had their electrical properties evaluated by measurements of DC electrical conductivity and AC impedance spectroscopy. Their morphologies were evaluated by atomic force microscopy (AFM) and electron microscopy; and their structures were analyzed by small angle X ray scattering (SAXS). The results showed that the higher electrical conductivities and the lower percolation thresholds were obtained for the SBS/MWCNT nanocomposites obtained by the solution technique. The SEBS/MWCNT nanocomposites with PS grafted on MWCNT had higher conductivity than the non-grafted systems. The nanocomposites PS-b-PVDF/MWCNT had also better conductivities than the PVDF/MWCNT. Therefore, it was shown that both the modification of the processing, as well as the filler and the matrix are suitable approaches to control the structures and the electrical conductivity of CPNs based on MWCNT and block copolymers.