Estudos de melhorias no processo de hidrólise enzimática de biomassas para produção de etanol

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Corrêa, Luciano Jacob
Orientador(a): Cruz, Antonio José Gonçalves da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química - PPGEQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/7190
Resumo: In this work it was evaluated, firstly, the performance of four impellers configurations in the enzymatic hydrolysis of sugarcane bagasse. The configurations evaluated were: (1): Rushton turbine - Rushton turbine; (2): Elephant ear down-pumping and Rushton turbine; (3): Rushton turbine and Elephant ear up-pumping; (4): Elephant ear downpumping and Elephant ear up-pumping. The choice of the best impeller configuration was based in mixing efficiency, characterized by the mixing time. The configurations were also evaluated considering the conversion of cellulose to glucose, power consumption as well as the rheological behavior during hydrolysis. The hydrolysis experiments were carried out in batch stirred tank reactor (3 L) using 10% w/v of solids (pH 4.8; 50°C; 470 rpm), 10 FPU· g-1 biomassa for 96 h. The configuration (4) showed the lowest mixing time and energy efficiency values (ratio of conversion of cellulose to glucose and total energy consumption) of 78.9%·MJ-1. Further, to get a high concentration of glucose associated with low power consumption, it was investigated two operating modes: batch and fed-batch. The strategies evaluated were: E1 [20%]; E2 [10(E)+5+5%]; E3 [5(E)+5+5+5%]; E4 [5(E)+5+5+5%], and E5 5(E)+5(E)+5(E)+5(E)%]. The best energy efficiency was obtained for the E5 strategy in which substrate and enzyme were added simultaneously (0.35 kgglicose·kWh-1). This value was 52% higher than that obtained in the single batch operation (E1). In continuation of the work were carried out enzymatic hydrolysis of exploded and hydrothermal bagasse and cane straw submitted to hydrothermal pretreatment. The experiments were carried out under the conditions: solids loading of 10 (w/v), pH 4.8; 50 ° C; 470 rpm and 10 FPU·g-1 biomass for 96 h. The efficiency obtained in the enzymatic hydrolysis of steam explosion sugarcane bagasse proved to be 41 and 46% higher than the hydrolysis of hydrothermally pretreated sugarcane straw and bagasse, respectively. Finally, a scale-up protocol with a scale factor equal to 1000 was proposed. It was analyzed the maintenance of two parameters on larger scale: the constancy of the mixing time (tm) and the constancy of the power consumption per unit volume (P/V). In turn, maintenance P/V parameter constant, the mixing time and the new scale power consumption (3000L) were approximately 4 and 1000 times higher, respectively, than those values obtained in the smaller scale (3L).