Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Laia, Marcos Antonio de Matos |
Orientador(a): |
Cruvinel, Paulo Estevão
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Carlos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufscar.br/handle/20.500.14289/358
|
Resumo: |
This work presents the space variant noise filtering of tomographic projections based on the Kalman filter. For development and filter selection it was evaluated different modalities of the Kalman filter, as well as included the use of Ascombe transform and neural network. Results were analyzed by means of Improvement in Signal to Noise Ratio (ISNR) measurements, which were obtained in a region of interest (ROI) on the resultant images, reconstructed with the use of a backprojection algorithm. In this context the results qualified the unscented Kalman filter with a neural network as the best configuration for filtering of soil tomographic projections. |