Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Barsi, Fabrício Ventura |
Orientador(a): |
Cardoso, Dilson
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Carlos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Química - PPGEQ
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufscar.br/handle/20.500.14289/3879
|
Resumo: |
The objective of this paper was to study the influence of metal loading content on the properties of bimetallic catalysts, formed by Pt and Ni, supported on zeolite HUSY and HBEA. Another objective of this study was to infer possible mechanisms and reaction pathways. In this sense, were compared catalysts containing different contents and percentage of metals in the isomerization of n-heptane and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), hydrogen chemisorption, temperature-programmed reduction (TPR). The results show that the catalyst with the total metal content of 180 μmol of Me.gcat -1 was the most active, suggesting that there is an optimum relationship between acid sites and metallic sites. The increase in total metal content of the solid from this value decreases the activity of the same, possibly due to decreased dispersion of metallic phase in the catalyst. In this content, the activity increases with the percentage of platinum, until the value of 50%. Increasing the percentage of platinum above this value, there is a slight decrease in activity of the catalyst. The catalysts with higher activity were almost 100% selective to the isomerization reaction. Through TEM and chemisorption of H2 there was a better metal dispersion on the catalyst 50Pt50Ni/HBEA with 180 μmol of Me.gcat -1 in agreement with the catalytic results. By EDX analysis performed during the characterization by scanning electron microscopy verified the presence of nickel, which was not found by EDX analysis in transmission electron microscopy, indicating that this element (metal or cationic) is dispersed in the zeolite matrix. The results of TPR, there was a greater reduction of Ni2+ ions when it is in the presence of Pt, evidenced by the shift reduction peak to lower temperatures in front of the bimetallic catalysts monometallic. The results also showed that the process of rapid reduction has not reduced completely cations Pt2+ and Ni2+ in the catalysts. It was realized a study of the influence of contact time of reagents (nhexane and n-heptane) with the catalyst and also the isomerization of 2-methylhexane in order to study the mechanism of isomerization. |