Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Gomes, Priscila da Silva |
Orientador(a): |
Tomazella, Vera Lucia Damasceno
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Carlos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Estatística - PPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufscar.br/handle/20.500.14289/4530
|
Resumo: |
Microarrays technologies are used to measure the expression levels of a large amount of genes or fragments of genes simultaneously in diferent situations. This technology is useful to determine genes that are responsible for genetic diseases. A common statistical methodology used to determine whether a gene g has evidences to diferent expression levels is the t-test which requires the assumption of normality for the data (Saraiva, 2006; Baldi & Long, 2001). However this assumption sometimes does not agree with the nature of the analyzed data. In this work we use the skew-normal distribution described formally by Azzalini (1985), which has the normal distribution as a particular case, in order to relax the assumption of normality. Considering a frequentist approach we made a simulation study to detect diferences between the gene expression levels in situations of control and treatment through the t-test. Another simulation was made to examine the power of the t-test when we assume an asymmetrical model for the data. Also we used the likelihood ratio test to verify the adequability of an asymmetrical model for the data. |