Distribuição normal assimétrica para dados de expressão gênica

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Gomes, Priscila da Silva
Orientador(a): Tomazella, Vera Lucia Damasceno lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4530
Resumo: Microarrays technologies are used to measure the expression levels of a large amount of genes or fragments of genes simultaneously in diferent situations. This technology is useful to determine genes that are responsible for genetic diseases. A common statistical methodology used to determine whether a gene g has evidences to diferent expression levels is the t-test which requires the assumption of normality for the data (Saraiva, 2006; Baldi & Long, 2001). However this assumption sometimes does not agree with the nature of the analyzed data. In this work we use the skew-normal distribution described formally by Azzalini (1985), which has the normal distribution as a particular case, in order to relax the assumption of normality. Considering a frequentist approach we made a simulation study to detect diferences between the gene expression levels in situations of control and treatment through the t-test. Another simulation was made to examine the power of the t-test when we assume an asymmetrical model for the data. Also we used the likelihood ratio test to verify the adequability of an asymmetrical model for the data.