Avaliação do potencial biotecnológico de microorganismos associados ao inseto-praga diabrotica speciosa na produção de polímeros biobaseados e biodegradáveis

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Perlatti, Bruno
Orientador(a): Forim, Moacir Rossi lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Química - PPGQ
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/8560
Resumo: Technological development and market pressure turned polymers into widely used structural materials for several different applications, being manufactured by a wide range of monomers. However, traditional polymers usually show some drawbacks regarding environmental aspects, as most used polymers are produced with nonrenewable feedstock and generate huge amounts of non-biodegradable residues. Therefore it is imperative the sustainable development of new bio-based and biodegradable polymeric materials. The use of microorganisms for obtaining biopolymers is a very promising reality. However, in order to achieve viable production in industrial scale it is necessary to overcome economic barriers, by using microbes with good assimilation of low-cost substrates and high biopolymer yields. As such, the objective of this work was the isolation and identification of bacteria associated with the insect Diabrotica speciosa, as well as the evaluation microbial capacity of biopolymer production. The insect presented great microbial diversity, identified as an underexplored niche with tremendous biotechnological potential for the investigation of novel species and/or strains. In an attempt to find bacterial isolates effective on the production of two classes of biopolymers, polyhydroxyalkanoates (PHA) and exopolysaccharides (EPS), it was obtained 73 strains of bacteria associated with Diabrotica speciosa. These bacteria were identified at genus level by genetic techniques using 16S rDNA sequencing and by proteomic techniques using MALDI-TOF MS. Both characterization methods yielded 100% convergence on results. It was found 17 different bacterial genera, which were submitted to qualitative screening assays in order to identify strains producing PHA using Nile Red dye method, as well as for EPS by using the bacterial spot test. Promising strains on both assays were selected for further quantitative studies and structural characterization of the obtained biopolymers. Quantitative analyses for PHA production corroborated satisfactorily with qualitative results, especially to bacteria from genera Aurantimonas and Delftia which demonstrated high PHA production capacity with 50 and 90% polymer yield on dry mass, both strains being strains able to use substrates such as glucose, acetate and glycerol. GC-MS analyses indicated that Aurantimonas sp. produced mostly a homopolymer of polyhydroxybutyrate (PHB), while Delftia sp. was able to produce a copolymer having butyrate and valerate (PHBV), with up to 10% (w/w) of valerate. Regarding EPS production, the screening showed that the isolates were able to produce polymers in variable amounts, with vast and complex structural variations. Strains from genera Acidovorax, Aurantimonas and Luteibacter were further selected for quantitative analysis of EPS production and analytical characterization of the obtained biopolymer. After analyses using NMR, MALDI-TOF, SEC-UV-ELSD and GC-MS, bacteria from genus Luteibacter produced a highly complex polymer rich in mannose, glucose, fucose and xylose; genus Acidovorax produced a glucomannan-type EPS with a high degree of branching; and genus Aurantimonas was able to produce up to 2 g.L-1 of a water insoluble EPS. In face of these results, it was possible to conclude that D. speciosa microbiota showed to be extremely rich in bacterial species viable for exploratory studies with biotechnological context of biopolymer production. Investigated strains showed promising characteristics to be further evaluated in larger scale (fermenters), especially the bacteria Aurantimonas sp., able to produce PHBV and EPS.