Estados parcialmente emaranhados em comunicação quântica

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Gomes, Raphael Fortes Infante
Orientador(a): Rigolin, Gustavo Garcia lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Física - PPGF
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/5039
Resumo: In this master s thesis we approach the entanglement between quantum states as a resource to be used in the transmission of quantum information, particularly in quantum teleportation. Our focus was directed toward the study of partially entangled quantum states, that is, states in which the entanglement degree is below the maximum value allowed by quantum mechanics, since they are more likely to be found in actual devices than maximally entangled states. We review the properties and concepts that characterize vectors and operators from the viewpoint of linear algebra to formally present the postulates of quantum mechanics. We introduced the notion of qubits and showed how these can be applied to computing tasks via quantum logic gates.We explained in details the main quantum teleportation protocols that originated the methods used in this work, highlighting the advantages and disadvantages of each one. We presented protocols with new arrangements and introduced techniques that have improved some of the known methods, providing for those alternatives relating to construction and architecture in the arrangement of the channels. We proved that the probability associated with a multiple teleportation of a single qubit through channels in series tends to the maximum limit for a special case. We showed that imperfect states can be corrected and that it is possible to transmit a single qubit or a pair of qubits using GHZ states and modification of Bell basis states. We discussed the relationship between the final success probability value and the bases and channels degree of entanglement for each method. We concluded the thesis with a general analysis of all protocols, highlighting the most efficient ones with arguments that include theoretical and practical viewpoints.