Modelo de mistura com dependência Markoviana de primeira ordem

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Meira, Silvana Aparecida
Orientador(a): Milan, Luis Aparecido
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/4587
Resumo: We present the mixture model with first order dependence, MMM(1). This model corresponds to a redefinition of the hidden Markov model (HMM) where a non observable variable is used to control the mixture. The usual mixture model is a particular case of the MMM(1). The proposed redefinition makes easier the application of usual estimation tools as the EM algorithm. We present the maximum likelihood and Bayesian estimators for the normal and binomial cases of the MMM(1) and usual mixture models. Simulation studies show the functionality of the proposed models and their estimators. And finally we present an application to a real data set for the binomial case.