Melhorando a tomada de decisões na construção: Modelagem não paramétrica de atrasos induzidos pelo clima

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Comito, Mateus Borges
Orientador(a): Izbicki, Rafael lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/20146
Resumo: Effective construction project management faces significant challenges due to frequent delays, many of which are influenced by climatic variables. Anticipating these delays is crucial, and although various methods based on stochastic generators, productivity impact models, or machine learning exist, there is still a notable lack of direct approaches that model productivity using exclusively historical weather data, which is easily accessible. Moreover, it is not sufficient to have only a point estimate of the delay for a specific project. It is more useful to estimate the total uncertainty associated with this estimate. This dissertation proposes a flexible non-parametric model aimed at filling these gaps by estimating the probability distribution of a project's execution time using only weather information. We start from the premise that each task has a daily probability of execution. This process involves a non-stationary stochastic process, described by a non-stationary discrete-time Markov Chain. We use exclusively climatic data to calculate the necessary parameters, and the distribution is estimated through Monte Carlo simulation. The results highlight the utility of the model in predicting optimal start dates, accurately estimating project completion, establishing contractual limits for expected delays due to weather conditions, and analyzing critical paths within the project. Additionally, we present a mathematically rigorous tool for model comparison, allowing for the optimization of hyperparameters and the selection of the most suitable prediction model. This investigation contributes to improving decision-making, minimizing the negative impacts of uncertainty on productivity and construction timelines, resulting in an overall improvement in project efficiency.