Modelos de sobrevivência na presença de eventos recorrentes e longa duração

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Cobre, Juliana
Orientador(a): Louzada Neto, Francisco lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4481
Resumo: In this thesis it is proposed to analyze recurrent event data, recurrent event data with cure fraction and recurrent event data with censoring and competing causes. For the recurrent event data analysis it is proposed a multiple time scale survival model, which includes several particular cases. For recurrent event data with a cure fraction we consider a multiple time scale survival models embedded on a mixture cure fraction modeling. It is also proposed a general model to survival data in presence of competitive causes. In this case, it is assumed that the number of competitive causes follows a generalized negative binomial distribution. While, for the time of occurrence of each cause, a Weibull and a log-logistic distribution were considered. Simulations studies were conducted for every proposed model in order to analyze the asymptotical properties of the estimation procedures. Both, maximum likelihood and Bayesian approaches were considered for parameter estimation. Real data applications demonstrate de use of the proposed models.