Synthesis and graphitization of phenolic resins for carbon-containing refractory applications

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Talabi, Segun Isaac
Orientador(a): Lucas, Alessandra de Almeida lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/12228
Resumo: Carbon-containing refractories’ (CCRs) present special chemical and thermomechanical properties, which depend on the presence of carbonaceous phase with a structure similar to those of graphite. However, phenolic resins that are commonly used as binder for such refractories produce amorphous carbon, which can limit their performance. Consequently, this research focused on the synthesis and graphitization of these resins under temperatures and conditions suitable for refractory production. In the study, some series of experiments were conducted to investigate the role of boron oxide, boric acid and ferrocene as graphitizing agent for phenolic resins under various processing conditions such as mixing technique and heating procedure. Both conventional (commercial and laboratory synthesized products) and lignin modified phenolic resins were considered. The resulting carbon samples were characterized using X-ray Diffractometer (XRD) to determine the amount of generated graphitic carbon after carbonization. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) were also used to corroborate the information obtained from the XRD analysis. The results showed that these additives can induce crystalline carbons generation during pyrolysis depending on the resin chemistry and processing parameters. The mechanism leading to carbon crystallization was attributed to the formation of B‒O‒C bonds for the boron compounds modified resins. The B‒O‒C bonds has a lower binding energy (compared to C‒C), which permits the rotation/reorganization that is necessary for graphitic carbons production. Similarly, Fe3C acted as active sites for crystalline carbon generation during pyrolysis of the resins-ferrocene formulations. Thermogravimetric analysis (TGA) of the carbon samples show that several factors such as bond strength, composition and atoms arrangement control their oxidation resistance. Moreover, the prepared CCR castables show improved oxidation resistance based on in-situ graphitization of the binder component.