Uso de múltiplos descritores com condições de contorno e visualização hierárquica em CBIR

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Real, Luiz Gustavo dos Santos
Orientador(a): Ribeiro, Marcela Xavier lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/12969
Resumo: Multiple descriptors have been tested and used in Content-Based Image Retrieval (CBIR) systems. Each descriptor consists of a feature extractor associated with a distance function. An extractor is generally suitable for representing a specific subset of images on a base. The boundary conditions are information used to detect this subset. The use of visualization in CBIR enables to represent pictorially the similarity relationship between the images present in the base, improving the user's understanding of the CBIR system, which can modify parameters to obtain better results. It is proven that the use of multiple descriptors with boundary conditions tends to improve the accuracy of CBIR queries, but there is no data on the impact that the technique generates on visualization. This work uses multiple descriptors with boundary conditions to generate a Neighbor Joining similarity tree-based view. Tests have shown that the quality of the visualization may be related to the quality of the query result. The more accurate the results of a query, the better the organization of the elements in the visualization. In the context of similarity tree, it was verified that the quality of the generated tree follow the level of precision measured in the query.