Ação da vitrocerâmica bioativa (Biosilicato®) no processo de reparação óssea em ratos
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Biotecnologia - PPGBiotec
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/7577 |
Resumo: | The present study aimed to evaluate the effect of two different Biosilicate® (P2O5-Na2O-CaO-SiO2 system) presentations - highly porous scaffold and composite material – on a tibial bone defect model in rats. Two studies were performed; the first one aimed at evaluating the effect of highly porous scaffolds on bone regeneration using histopathological analysis, immunohistochemistry and immunoenzymatic assay. In this study, 80 male Wistar rats (12 weeks old and body weight of approximately 300 g) were divided in two groups (control and Biosilicate®) and euthanized after 3, 7, 14 and 21 days post-surgery. The histopathological evaluation revealed that both groups presented similar inflammatory responses after 3 and 7 days. At all time points, the scaffold degradation was observed, mainly in the border of the material, allowing the ingrowth of newly formed bone. The immunohistochemical analysis showed that the Biosilicate® scaffolds induced the synthesis of (i) ciclooxigenase 2 (COX-2), (ii) vascular endothelial growth factor (VEGF) and (iii) runt-related transcription factor 2 (RUNX-2). Additionally, the immunoenzymatic assay indicated that the Biosilicate® group did not presented significant statistical difference in the levels of tumor necrosis factor alpha (TNF-α) in all evaluated periods compared to the control group. In addition, the Biosilicate® group presented a higher concentration of interleukin 4 (IL-4) at day 14 and a lower concentration of interleukin 10 (IL-10) 21 days after the surgery when compared to the control group. The second study aimed at investigating the effects of Biosilicate®/poly lactic-co-glycolic acid (PLGA) composites on the process of bone repair using histopathological, morphometric, immunohistochemical and gene expression (Real-Time PCR, qRT-PCR) analyses. In this study, 80 male Wistar rats were distributed in two groups (Biosilicate® and Biosilicate®/PLGA) and euthanized 3, 7, 14 and 21 days after the material implantation. The main findings showed that the incorporation of PLGA into the Biosilicate® had a significant effect in the material morphological structure, leading to a pH decrease and accelerating the mass loss upon incubation in phosphate buffered saline (PBS). Moreover, the histological evaluation revealed that the Biosilicate®/PLGA group presented a higher material degradation accompanied by a higher bone formation when compared to the plain Biosilicate® after 21 days. The immunohistochemical analysis did not show any difference in the immunolabeling for Runx2, RANKL and OPG between Biosilicate® and Biosilicate®/PLGA. In addition, the qRT-PCR indicated that the Biosilicate®/PLGA induced the osteogenic gene expressions (bone morphogenetic protein 4, Runtrelated transcription factor 2 and osteocalcin) at 21 day after surgery. The results evidenced by the present studies suggest that both materials (highly porous Biosilicate® scaffolds and Biosilicate®/PLGA composites) were effective in inducing the repair of tibial bone defects in rats, demonstrating that these materials are promising alternatives for treating bone fractures. |