Determinação de polifenóis totais utilizando sistemas de análise por injeção em fluxo

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Piccin, Evandro
Orientador(a): Fatibello Filho, Orlando lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Química - PPGQ
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/6622
Resumo: In this dissertation, three flow injection analysis methods for total polyphenol determination in tea and acacia s tannins commercial extracts were developed. The first method is based on the reaction between the polyphenol compounds and the metavanadate anion (VO3 -), yielding a colored product with strong absorption at 585 nm. In the flow injection system with merging zones employed, 500 µL of the sample solutions and 500 µL of 0.10 mol L-1 ammonium metavanadate solution were injected into the individual carrier solutions (deionised water). With the reaction development in a 150 cm coil reactor, the chromogenic product formed was monitored spectrophotometrically at 585 nm. The analytical curve was linear in the tannic acid concentrations ranging from 35.7 and 544 mgL-1 (2.1 x 10-5 and 3.2 x 10-4 mol L-1), with a detection limit of 12.9 mg L-1 (7.6x10-6 mol L-1). An analytical sampling of 70 determinations per hour was obtained with relative standard deviations smaller than 0.8 % for tannic acid solutions containing 81.7 and 493 mg L-1 (4.8 x 10-5 and 2.8 x 10-4 mol L-1). Because the recoveries from tea samples varied between 87.3 and 94.2%, the standard multiple additions method was used for total polyphenol determination in these samples. In the second proposed method the same reagent was employed in the determination of the polyphenol compounds. In this case, a single-line flow injection system coupled with a solid phase reactor containing silver metavanadate (AgVO3) immobilized in polyesther resin was employed. In this system, volumes of 500 µL of the sample solutions injected into the carrier solution were converted in the chromogenic product in the solid phase reactor with 10 cm of length containing particles with size ranging from 250 and 300 µm of AgVO3 immobilized in polyesther. The analytical curve was linear in the tannic acid concentrations ranging from 88.5 and 2041 mg L-1 (5.2 x 10-5 e 1.2 x 10-3 mol L-1), with a detection limit of 10.0 mg L-1 (5.9 x 10-6 mol L-1). An analytical sampling of 35 determinations per hour was obtained with relative standard deviations smaller than 1.1 % for tannic acid solutions containing 175 and 1350 mg L-1 (1.0 x 10-4 and 7.9 x 10-4 mol L-1). Since the recoveries from acacia s tannin extracts of samples varied between 98.5 and 104%, the total polyphenol analysis were made directly by the use of an analytical curve. In the third developed method, a flow injection analysis system was employed for turbidimetric determination of total polyphenols, using copper(II) íons in a acetate medium as the precipitin reagent. In this system, 350 µL of reagent solution (0.10 mol L-1 copper(II)) and 350 µL of the sample solutions were injected simultaneously into a merging zones system. After a previous mixing at a 50 cm coil reactor, they receive an 0.10 mol L-1 ammonium acetate solution by confluence. The precipitate formed at a 100 cm coil reactor, was monitored turbidimetrically at 500 nm. A 10-2 mol L-1 HNO3 solution flowing intermittently at 3.5 mL min-1 was used to wash the flow system during the sampling. The determination of polyphenol compounds in tea samples in the concentration range from 18.0 to 725 mg L-1 (1.1 x 10-5 e 4.3 x 10-4 mol L-1) with a detection limit of 6.49 mg L-1 (3.8 x 10-6 mol L-1) for standard solutions of tannic acid was obtained. The analytical sampling was 90 determinations per hour with relative standard deviations smaller than 0.9 % for tannic acid solutions containing 109 and 357 mg L-1 (6.4 x 10-5 and 2.1 x 10-4 mo L-1) (n = 10). Because the recoveries from tea samples varied between 91.4 and 111%, the standard multiple additions method was used for total polyphenol determination in these samples. The results of the sample analysis obtained with the proposed methods were compared with those obtained employing the AOAC official method with relative errors smaller than 6.4%.