Identificação de massas desbalanceadas em lavadoras de roupas com técnicas de redes neurais e visão computacional

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Antunes, Luiz Fernando Bisan
Orientador(a): Fontes, João Vitor de Carvalho lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica - PPGEE
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/19419
Resumo: The spinning phase is a primary function of washing machines which has the objective of extracting residual water from clothes by spinning a vertical axis basket suspended in four points. Either by the washing process or by inappropriate consumer usage, when the clothes are not uniformly distributed there is an unbalancing phenomenon that can result from small hit noises to product destruction. The research has the objective of evaluating the application of neural network techniques to identify unbalanced mass in washer machines using collected data from a computer vision system. By observing variables such as angular speed and translational movement from different parts, artificial intelligence techniques will be applied in order to identify and classify patterns created by different intensities of unbalancing loads. Initially, the systems of a washing machine and the unbalancing phenomenon will be described. The bibliographic review of digital image processing supports the computational vision system and algorithm. The practical experimentation will collect a data set from the entire inference space of possible unbalancing configurations, in such a way that enough data is provided to train, validate and test the neural network tools. It is expected the proposed system be capable of identifying and classifying different intensities of an unbalanced load.