Modelagem por homologia da tubulina do Plasmodium falciparum e o estudo de lignanas ariltetralônicas antimaláricas por docking molecular

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Corrêa, Denis da Silva
Orientador(a): Caracelli, Ignez lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Biotecnologia - PPGBiotec
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/7309
Resumo: Malaria is an acute febrile disease caused by protozoan parasites of the genus Plasmodium, being the species P. falciparum responsible for the most severe forms and deaths caused by the disease. These parasites have developed resistance to commonly used drugs and therefore there is a need to develop new antimalarial agents. Aryltetralone lignans are compounds that show antiplasmodial activity in vitro against P. falciparum, but its mechanism of action is still not fully understood. In this work, we postulate a plausible mode of action of some aryltetralone lignans and according to the obtained results we suggest modifications to the ligands for a better biological activity. In order to achieve our objectives we first performed a search for similar chemical compounds, for which their macromolecular targets were known. From the results obtained, P. falciparum tubulin was selected as a potential target for these lignans. Since there is no experimentally determined three-dimensional structure for this protein, we performed a molecular homology modeling of P. falciparum tubulin and the structure of bovine tubulin complexed with colchicine was selected as template. The analysis of the obtained model showed that the three dimensional structure of Plasmodium tubulin is conserved in relation to the bovine tubulin with some important substitutions occurring in the colchicine binding site region: Ala250B by Ser248B, Ala316B by Cys314B and Ile318B by Met316B. Then, molecular docking of the aryltetralone lignans, colchicine and podophyllotoxin was performed in the modeled P. falciparum tubulin. The docking calculations results allowed to conclude firstly that, although the amino acid substitutions in the binding site, the colchicine binding mode in the P. falciparum tubulin is exactly the same as that already described in the literature for bovine tubulin. As for podophyllotoxin, a different binding mode from that described in the literature for bovine tubulin was obtained due to the replacement of Ala250B by Ser248B and the Val318B by Met316B. For the aryltetralone lignans studied, three different binding modes were obtained: one exhibited by compounds 1, 2 and 3, another by 4 and 6, and a third one by 5. The lignans 1, 2 and 3 are oriented in a way so that the C ring containing the dimethoxy or methylenedioxy group is positioned in the same region obtained for the ring containing the trimethoxy group in the case of colchicine and podophyllotoxin, performing a C-H...π interaction with Leu246B. Lignans 4 and 6 orient themselves with the aromatic ring C between Ala180A and Leu246B and being held in this position by C-H...π interactions. Lignan 5 is oriented with the aromatic ring C between Leu246B and Leu253B, performing C-H...π interactions with these residues, in a similar way to what was obtained with colchicine in this site. So the likely mechanism of action of the aryltetralone lignans studied here would be their binding to the same colchicine binding site in the tubulin protein of P. falciparum and thereby interrupting the divisions and other cellular functions.