Caracterização elétrica e microestrutural de vitrocerâmicas condutoras por íon lítio com estrutura NASICON

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Semanate, José Luis Narváez
Orientador(a): Rodrigues, Ana Candida Martins lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/711
Resumo: This doctoral thesis presents results of the chemical, thermal, structural, microstructural and electrical characterization of glass and glass-ceramics with Li1,3Al0,3Ti1,7(PO4)3 (LATP), Li1,5Al0,5Ge1,5(PO4)3 (LAGP) and (LixNa1-x)1,5Al0,5Ge1,5(PO4)3 (LNAGP) compositions. All the compositions are shown to present homogeneous volume nucleation (Tgr ≤ 0.6), enabling their microstructures to be controlled through heat treatments, which in this study were single and double. The highly conductive NASICON-type phase was obtained in all the studied compositions. Secondary phases were also observed, albeit with no deleterious effect on the total electrical conductivity. Electrical characterization by impedance spectroscopy, performed at various temperatures below ambient temperature, enabled the contributions of the grain and grain boundary on the total electrical conductivity to be separated. An analysis of the two glass-ceramics, LATP and LAGP, leads to the conclusion that, in both cases, the total electrical resistance of the samples, and hence, their total electrical conductivity, is dominated by the grain boundary. The LATP composition presented higher electrical conductivity at room temperature, but also lower glass forming ability (very low Kgl). A Rietveld refinement of the LATP samples obtained by single heat treatment revealed that the concentration of lithium ions in the unit cell increases as a function of the heat treatment temperature. The electrical conductivity results indicate a relationship between this property and the thickness and volume fraction of grain boundaries, since the latter decrease with heat treatment temperature (in TTS case) and increase with nucleation time (in the case of TTD). The LATP samples obtained by TTD exhibited higher electrical conductivity than those obtained by TTS at the same temperature; however, this effect was not observed in the LAGP samples. The electrical conductivity of the LNAGP samples showed a mixed alkali effect in both the glasses and the corresponding glass-ceramics.