Síntese assistida por microondas de LiMn2O4, caracterização e testes como catodo para dispositivos de armazenamento de energia

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Silva, João Pedro da
Orientador(a): Biaggio, Sonia Regina lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Química - PPGQ
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/6492
Resumo: Lithium manganese oxide - LiMn2O4 - was produced by a microwaveassited solid state reaction. Solid mixtures containing LiOH.H2O and -MnO2 (synthesized electrolytically) underwent microwave irradiation for 3, 4 and 5 min. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy and cyclic voltammetry. Conductivity measurements and charge / discharge tests were carried out with the mixture: 85% LiMn2O4 / 10% carbon black / 5% PVDF. XRD analyses showed that LiMn2O4 was obtained in a single phase of cubic structure belonging to the space group Fd3m in only 3 min of microwave irradiation. This short time for the LiMn2O4 synthesis represents an energy saving greater than 90% when compared with the time employed in the traditional method of synthesis. SEM micrographs showed morphological changes and particle size increase when the microwave irradiation time was increased. The mixture (85% LiMn2O4 / 10% carbon black / 5% PVDF) presented electronic conductivity similar to that of a semiconductor (σ ~ 10-1 S m-1), which is adequate for using as cathode in lithium ion battery. Charge and discharge tests showed good electrochemical stability for all the oxides synthesized at different times, evidenced by a small decrease (12 to 17%) of their specific capacities during 30 cycles of charge and discharge. The oxide produced at 3 min of microwave irradiation presented the highest charge supply (77 93 mA h g-1) at an elevated discharge rate (C/1), besides a highly uniform morphology and the lowest particle size (~1 μm).