Newton versus Leibniz: uma luz sobre a controvérsia intelectual na descoberta do cálculo

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Santos, Ronaldo Alberto Lima dos
Orientador(a): Carvalho, Silvia Maria Simões de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus Sorocaba
Programa de Pós-Graduação: Programa de Pós-Graduação em Ensino de Ciências Exatas - PPGECE
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/18672
Resumo: The purpose of this dissertation is to conduct a bibliographical research on the life and works of two of the greatest mathematical scientists of the 17th century, Isaac Newton and Gottfried Wilhelm Leibniz. Although the mathematicians had a vast intelectual repertoire, the research focuses on the aspects of their works and the historical consequences of their contributions. It was possible to observe that the vast amount of knowledge possessed by these scientists led Newon and Leibniz to clash over the priority of the Discovery of Calculus, garnering supporters na creating adversaries. This dispute resulted in a certain nationalism and had repercussions for Mathematics, such as a significant stagnation in the advancement of knowledge production. This dissertation presentes the controversial Search to determine who initially developed Differential and Integral Calculus, showcasing the versions that emerged at the time and continue to be debated to this day. However, it is not the aim of this dissertation to determine the first discoerer of Calculus; instead, it seeks to highlight the historical facts that contribute to Newton’s or Leibniz’s discoveries and their significance for Mathematics. It becomes evidente that each of them arrived at the development of their ideas differently, and both were instrumental in enabling Calculus to sole problems across various fields.