Mineração de regras de associação sequenciais em séries temporais e visualização: aplicação em dados agrometeorológicos

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Cano, Marcos Daniel
Orientador(a): Ribeiro, Marcela Xavier lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/564
Resumo: Technological development brought improvements in the technology of climate sensors and Earth's surface image acquisition, gathering increasing amounts of data. Generally, when these data are submitted to mining algorithms, the output is the production of hundreds or even thousands of textual patterns, making the task of data analysis by the domain expert even harder. Hence, it is crucial, to support experts, the development of a tool that helps to identify and display patterns of interest. In this context, this research project at Master Science level aims to develop a technique for mining association rules in time series allowing agrometeorological data analysis over time.