Pórticos em concreto pré-moldado preenchidos com alvenaria participante

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Medeiros, Wallison Angelim
Orientador(a): Parsekian, Guilherme Aris lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Civil - PPGECiv
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/10029
Resumo: This research presents a study on the behavior of precast concrete frames with participating masonry infill to be considered in the design of a building lateral load bracing system. The study brings a literature review on the topic. An experimental testing of a reinforced concrete frame infilled or not with masonry is used to calibrate a finite element model using the Simulia Abaqus 2017 package. The model uses concrete damage plasticity to consider both the concrete and the masonry behaviour. Embedded elements are used to consider rebars inside the concrete. Masonry elements are considered homogeneous with contact surfaces along the concrete-masonry interface. After the properties were calibrated the numerical models showed excellent accuracy when compared to the experimental tests. Precast concrete frames, whose dimensions and properties were from a real case, was then modelled with and without the participating masonry frame. The column-corbel and beam connection was modelled with solid elements with contact surface on the interface allowing to close represent its behaviour. Models considered a frame with one, five and ten storeys, two masonry strength and the use or nor of a mortar layer to fix masonry under the concrete beam. Conclusion from the finite element model analyses indicate the influence of each parameter on the system behaviour. The FEM results were then used to calibrate the width of a diagonal truss to be used in simple bar element models. Finally, a 3D-frame model was used to evaluate a actual 10-story precast concrete building considering or not the participating infill masonry. Only two masonry walls, close to the building central core and without openings, were considered yet results indicate great influence on considering the participating infill leading to an efficient building design. Future work is proposed to experimentally evaluate the conclusions from the numerical analyses here reported.