Filtragem de sinograma tomográfico afetado por ruído Poisson utilizando wavelets anisotrópicas
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/8800 |
Resumo: | The diagnostic imaging by computed tomography has become popular in recent decades. As the image acquisition method is effected by exposing the human body to X-ray dose (ionizing radiation), the frequent realization of diagnoses results in the accumulation of radiation, and may be a significant factor in the emergence of cancer diseases. This problem has motivated researchers to develop methods to reduce the dose of X-rays so that the image quality can be maintained. A common methodology involves applying algorithms for filtering noisy tomographic images that can be acquired under low dose of X-rays. This process may occur in the reconstructed image domain or tomographic projections domain. This work proposes a methodology for applying filtering Poisson noise present in tomographic sinogram, which uses the main anisotropic wavelets studied by the scientific community, which are: Curvelet, Contourlet, Shearlet. These wavelets apply the concept of multiscale and multidirectional analysis in a multidimensional signal, and may be advantageous in two-dimensional analysis of sinogram, preserving better image details in a noise reduction process compared to orthogonal wavelets. |