Modelagem de partição bayesiana para dados de sobrevivência de longa duração

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Gonzales, Jhon Franky Bernedo
Orientador(a): Tomazella, Vera Lucia Damasceno lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4539
Resumo: In this work we present a bayesian approach for the survival model with cure rate in the presence of covariates. In this perspective, the modelling is a direct extension of the long-term model of (Chen et al., 1999). This model is considered flexible in the sense that the effects of the covariates are measured locally using the bayesian partition model developed by Holmes et al. (1999). The bayesian partition model is a generic approach to problems of classification and regression where the space of covariates is divided in disjoint regions defined by a structure of tessellation. The extension to modelling local maintains the structure of the proportional hazards model that it is intrinsic of the long-term model(promotion time) (Rodrigues et al., 2009a). Application of this theory appears in several areas, for example in finance, biology, engineering, economics and medicine. We present a simulation study and apply the methodology to a set of data on the clinical studies.