Combinação de classificadores para inferência dos rejeitados

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Rocha, Ricardo Ferreira da
Orientador(a): Louzada Neto, Francisco lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/4556
Resumo: In credit scoring problems, the interest is to associate to an element who request some kind of credit, a probability of default. However, traditional models uses samples biased because the data obtained from the tenderers has only clients who won a approval of a request for previous credit. In order to reduce the bias sample of these models, we use strategies to extract information about individuals rejected to be able to infer a response, good or bad payer. This is what we call the reject inference. With the use of these strategies, we also use the bagging technique (bootstrap aggregating), which consist in generate models based in some bootstrap samples of the training data in order to get a new predictor, when these models is combined. In this work we will discuss about some of the combination methods in the literature, especially the method of combination by logistic regression, although little used but with interesting results.We'll also discuss some strategies relating to reject inference. Analyses are given through a simulation study, in data sets generated and real data sets of public domain.