Equisingularidades de funções definidas em ICIS e IDS
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/12767 |
Resumo: | We study the equisingularity of a family of function germs $\{f_t\colon(X_t,0)\to (\mathbb{C},0)\}$, where $\{(X_t,0)\}$ is a family of $d$-dimensional isolated determinantal singularity. We define the $(d-1)$th polar multiplicity of the fibers $X_t\cap f_t^{-1}(0)$, $m_{d-1}(X_t\cap f_t^{-1}(0),0)$, and we present results relating the constancy of $m_{k}(X_t\cap f_t^{-1}(0),0)$ for $k=0,\ldots,d-1$ and $m_i(X_t,0)$ for $i=0,\ldots,d$ with the constancy of the Milnor number of $f_t$ and the Whitney equisingularity of the families $\{(X_t\cap f_t^{-1}(0),0)\}$ and $\{f_t\colon(X_t,0)\to (\mathbb{C},0)\}$. In the particular case where $\{(X_t,0)\}$ is a family of isolated complete intersection singularity we provide a condition to ensure the Whitney conditions in terms of the integral closure of the ideal defining the singular set of each member of family $\{f_t\colon(X_t,0)\to (\mathbb{C},0)\}$. We also relate the constancy of the Milnor number of $f_t$ with the strict integral closure of the module formed by the partial derivatives of the application that defines $X_t\cap f_t^{-1}(0)$. |