Medidas quânticas, descoerência e emaranhamento em cenários de física de neutrinos

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Bittencourt, Victor Augusto Sant Anna Valderramos
Orientador(a): Bernardini, Alex Eduardo de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Física - PPGF
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/5060
Resumo: In the first part of this work we describe the cosmological neutrinos as a composite quantum system and use the generalized theory of quantum measurements to acquire a probabilistic correlation between observable energies and flavor eigenstates. We associate flavor averaged and flavor weighted energies to, respectively, selective and non selective quantum measure schemes and avaliate the impact of these definitions in the calculation of a flavor effective mass that determines the neutrino contribution to the energy density of the cosmic inventory. Our results establish that if the cosmic neutrinos state is a maximal mixture all the procedures for the calculation of the energy density will generate the same results. In the second part we turn our attention to the free propagation of flavor states in the wave packet formalism. Interpreting each mass eigenstate, associated to a Gaussian momentum distribution, with a three qubit states, a flavor state is described as a quantum system composed of three subsystems. We consider the different correlations between the quantum superposition components in terms of subtle quantifiers and obtain a coherence scale compatible with the damping scale present in survival probabilities of a flavor, indicating a relation between the damping an the studied correlations. We investigate this relation in terms of the standard deviation between the damping and the density of states associated to the correlation quantifiers a deviation that is minimun only for certain values of the mass eigenstate momentum distribution width.