Comparação de métodos de estimação para problemas com colinearidade e/ou alta dimensionalidade (p > n)
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/ufscar/7954 |
Resumo: | This paper presents a comparative study of the predictive power of four suitable regression methods for situations in which data, arranged in the planning matrix, are very poorly multicolinearity and / or high dimensionality, wherein the number of covariates is greater the number of observations. In this study, the methods discussed are: principal component regression, partial least squares regression, ridge regression and LASSO. The work includes simulations, wherein the predictive power of each of the techniques is evaluated for di erent scenarios de ned by the number of covariates, sample size and quantity and intensity ratios (e ects) signi cant, highlighting the main di erences between the methods and allowing for the creating a guide for the user to choose which method to use based on some prior knowledge that it may have. An application on real data (not simulated) is also addressed. |