Otimização multiobjetivo da produção integrada de etanol de primeira e segunda geração e energia elétrica : aspectos ambientais e de processo
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Química - PPGEQ
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/7419 |
Resumo: | Currently there is a growing increase in fuel consumption, but also an increased concern about the end of fossil fuels and their environmental damage. In this scenario, secondgeneration ethanol (E2G), produced from sugarcane bagasse, appears as an option to increase the production of first generation ethanol (E1G), produced from sugarcane. The aim of this study was to evaluate the production of ethanol, the generation of electricity, CO2 emissions and vinasse into an E1G and E2G autonomous distillery through multiobjective optimization. This assessment has been formulated in terms of multi-objective optimization problems in virtual biorefinery modeled in EMSO (Environment for Modeling, Simulation and Optimization). The modeling of closed water circuits, CO2 production in the boiler and in the fermenter, and the process of concentrating the juice and vinasse streams through multiple-effect evaporators, and the multiobjective optimization involving the production of E2G, electric energy and production of CO2 and vinasse were performed. The modeled biorefinery processes 500,000 kg/h of sugarcane and burns, in addition to bagasse, 35,000 kg/h of sugarcane straw. The multiple effect evaporators for the broth concentration generated savings of around 18% in turbine backpressure exhaust steam when compared to a process with a single effect. The concentration of the vinasse through multiple-effect evaporators can cause a reduction in flow rate of more than 70%. The obtained non-dominated solutions in multiobjective optimization studies have shown a relationship among the production of ethanol, vinasse, energy and CO2 as a function of the decision variables: bagasse fraction diverted to produce E2G, and fraction of vinasse concentrated in multiple effect evaporators. Nondominated solutions are in the bagasse fraction range from 0.01% to 50.09%, and vinasse fraction comprises values greater than 14.09%. Among the solutions, ethanol flow was between 35,730 kg/h and 41,633 kg/h. CO2 production can reach values above 187,000 kg/h considering the CO2 released in the fermenters and in the boiler. On the issue of electricity generation, values above 83,000 kW can be reached. The results showed that the methodology used was efficient and the proposed objectives have been met. |