Presença de dados missing em modelos de regressão logística

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Ferreira, Natália Manduca
Orientador(a): Diniz, Carlos Alberto Ribeiro lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4526
Resumo: In this work we present a detailed study of the logistic regression model with missing data in the independent variables. Several techniques are considered such as Complete Case, Mean Imputation and Corrected Complete Case. We present a new estimator, denoted EMVGM, given by the combination between the Complete Case estimator and the ML-estimator with the use of Gaussian quadrature. A simulation study is carried out to evaluate the performance of the ML-estimators obtained in each technique above mentioned. In general, the alternative estimador, EMVGM, presents a better performance taking into account the variance, the bias and the mean quadratic error.