Neural networks as an optimization tool for regression

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Coscrato, Victor Azevedo
Orientador(a): Izbicki, Rafael lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/11853
Resumo: Neural networks are a tool to solve prediction problems that have gained much prominence recently. In general, neural networks are used as a predictive method, that is, their are used to estimate a regression function. Instead, this work presents the use of neural networks as an optimization tool to combine existing regression estimators in order to obtain more accurate predictions and to fit local linear models more efficiently. Several tests were conducted to show the greater efficiency of these methods when compared to the usual ones.