Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Monteiro, Douglas Machado
 |
Orientador(a): |
Lima, Vera Lúcia Strube de
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Faculdade de Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/6013
|
Resumo: |
In mass emergencies, a fair amount of information is exchanged via SMS messages. These messages tend to be informal and to contain abbreviations and misspellings, which makes them difficult to treat. This is a problem for current Information Extraction tools, especially for messages in Portuguese. This work proposes an architecture to extract information from SMS messages during emergencies. The architecture comprises four components: Linguistic Processing, Temporal Processing, Event Processing, and Information Fusion. We also defined an SMS corpus building process. From the proposal of this architecture, we conducted a case study, which included building BraCorpSMS, a corpus of SMS messages received by an electric utility company. We built a prototype in Python using NLTK to validate the architecture. The prototype had its Information Extraction components evaluated achieving Precision of 88%, Recall of 59% and balanced F-measure of 71%. The results indicate improvement opportunities, but as this is the first work for Portuguese facing processing SMS messages during emergency situations, it also serves as a roadmap for future work in the area. |