Modelo baseado em deep learning para detecção de portas e escadas para auxiliar deficientes visuais

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Nogueira Junior, Rodney Sales lattes
Orientador(a): Manssour, Isabel Harb lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/9828
Resumo: Due to a large number of visually impaired persons in the world, and with the advance of technology, the research interest in the development of different approaches to support the mobility of these persons has increased. In this context, the detection of doorsand stairs is an important research topic because it provides useful information that can aid in the mobility of these persons. In this work, we present a model to aid the visually impaired navigation in indoor environments. We found approaches that use computer vision techniques to identify corridors, obstacles, stairs, and doors through a literature review. However, few of them use recent techniques in computer vision and convolutional neural networks in their solutions. Thus, the presented model includes an experiment on convolutional neural networks to recognize and detect doors and stairs. Using the YOLO method, we present a model that detects not only different kinds of doors but also is capable of differentiating ascending and descending stairs, with FPS rates close to 30 and mAP above 90%.