Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Linden, Gustavo Sandini
 |
Orientador(a): |
Lima, Vera Lúcia Strube de
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Faculdade de Informáca
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/5038
|
Resumo: |
Este trabalho apresenta e avalia uma proposta para Categorização Hierárquica de Textos com uso combinado dos classificadores k-Nearest Neighbors (k-NN) e Support Vector Machines (SVM). O estudo foi embasado numa série de experimentos os quais fizeram uso da coleção Folha-RIcol de textos em língua portuguesa, que se encontram hierarquicamente organizados em categorias. Nos experimentos realizados, os classificadores k-NN e SVM tiveram seu desempenho analisado, primeiro individualmente, com uma variante da metodologia de avaliação hold-out, e após, de modo combinado. A combinação proposta, denominada k-NN+SVM, teve seu desempenho comparado com aquele dos classificadores individuais e com o da combinação por voto. Em síntese, a combinação k-NN+SVM não apresentou desempenho superior às demais alternativas, todavia o estudo permitiu a observação do comportamento dos classificadores e seu uso combinado, a identificação de problemas e possíveis soluções, bem como algumas considerações sobre a coleção de documentos utilizada |