Desenvolvimento e avaliação da atividade antitumoral de nanotubos de titanatos modificados com quercetina em câncer de bexiga

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Alban, Luisa lattes
Orientador(a): Ligabue, Rosane Angelica lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/8244
Resumo: The interest in nanostructures such as titanate nanotubes (TNTs) has grown notably in recent years due to their biocompatibility and economic viability, which makes them promising for application in the biomedical field. Quercetin (Qc) has been reported to have great potential as a chemopreventive agent widely used in the study of the treatment of diseases such as bladder cancer. Therefore, this work aimed to study the incorporation of quercetin in sodium TNTs (NaTNT) and zinc (ZnTNT), as well as characterize the nanostructures formed. In addition, it was intended to conduct Qc release tests and biological and antitumor activities in T24 lineage cells. The nanostructures of TNTs were synthesized and characterized by FTIR, MEVFEG, EDS, MET DRX and TGA techniques. The results showed that the nanostructures have a tubular structure and the exchange of Na+ ions by Zn2+, as well as the incorporation of quercetin in the structure do not alter this morphology. In addition, the interaction established between Zn and Qc increases the thermal stability of nanostructures. The release test showed that the maximum delivery of Qc occurs after 24h and the presence of Zn controls the release of the flavonoid. Biological assays have shown that the NaTNTQc and ZnTNTQc nanostructures decrease the cellular viability of T24 after 48h in high concentrations. Furthermore, NaTNT, NaTNTQc and ZnTNT reduce the number of T24 lineage cells when combined with irradiation after 48h showing that the combination of nanostructures and ionizing energy is an attractive object of study in the treatment of bladder cancer.