Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Couto, Júlia Mara Colleoni
 |
Orientador(a): |
Ruiz, Duncan Dubugras Alcoba
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tede2.pucrs.br/tede2/handle/tede/10250
|
Resumo: |
A imensa quantidade de dados que são gerados atualmente pelos nossos sistemas computacionais e dispositivos, conhecida por big data, requer tecnologias específicas, como data lakes, para que possam ser armazenados, processados e distribuídos. Data lakes são arquiteturas onde dados dos mais diversos formatos são armazenados para que sejam consultados quando necessário, sem a necessidade de esquemas prévios. Data lakes possibilitam o gerenciamento de ecossistemas de big data, e, hoje em dia, a maioria é criada tendo como base o framework Hadoop. Um dos desafios relacionados a data lakes é a integração dos dados de variados formatos. A integração dos dados é uma tarefa complexa que requer a atenção de um especialista, toma tempo e é sujeita a erros. Contudo, essa tarefa pode ser facilitada se forem utilizadas técnicas para conhecer o perfil dos dados. Nesta tese, desenvolve-se um modelo para automatizar o processo de integração de dados heterogêneos em data lakes baseados em Hadoop. O método desenhado para auxiliar a atingir os objetivos de pesquisa divide-se em 5 fases: Fundamentação, Implementação, Experimentação, Avaliação e Modelo final. As principais contribuições desta tese incluem os achados de três revisões sistemáticas da literatura, onde são exaustivamente discutidos os temas relacionados a data lakes, big data profiling e integração de dados em data lakes, e que serviram de base para o desenvolvimento de um modelo que possibilita a integração automatizada de dados heterogêneos em data lakes baseados no Hadoop, além dos experimentos com dados de bioinformática. |