Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Lopes, Natália Feijó
 |
Orientador(a): |
Moehlecke, Adriano
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais
|
Departamento: |
Faculdade de Engenharia
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/3226
|
Resumo: |
Research has been carried out for the development and manufacturing of solar cells in n-type silicon wafers, and one of the key issues for this development is the surface passivation of boron doped emitter in the p+nn+ structure. An alternative to the passivation of p+-type surfaces is the implementation of a floating junction, ntype, to reduce the surface recombination. The aim of this work was to implement a n+ region on the front surface of industrial solar cells p+nn+ by using a simplified method, producing the (n+)p+nn+. Liquid dopants deposited by spin-on were used and the diffusion thermal process was performed in a belt furnace in order to obtain the floating n+ region. Front metal grid based on Ag or Ag/Al was deposited by screenprinting and it etched-through the n+ region to establish the frontal contact of the (n+)p+nn+, creating a floating n+ region between the metal fingers. Diffusion temperature and belt speed were varied in order to obtain a n+ region that inverted the p+ emitter surface. It was observed that inversion only was confirmed by hot probe test for a diffusion temperature (TD) of 900 °C and belt speed (V E) of 50 cm/min, with two passes through the furnace. However, the processes carried out in the same temperature and VE = 50 cm/min, 100 cm/min and 133 cm/min presented phosphorus profiles (measured by ECV, electrochemical capacitance-voltage profiling) that can produce inversion of the surface p+ to n+. The best solar cell fabricated with n+ region on p+ was processed with TD = 900 °C and V E = 133 cm/min and presented the following electrical characteristics: VOC = 573 mV, JSC = 33.4 mA/cm2, FF = 0,51 and h= 9.6%. By one- and two-dimensional simulations of the (n+)p+nn+ structure, it was confirmed that the produced solar cells presented low shunt resistance due to the leakage currents in the n+ region deposited on the emitter which decreased the cell efficiency when compared with those with p+nn+ structure |