SPDW-Miner : um método para a execução de processos de descoberta de conhecimento em bases de dados de projetos de software

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Figueira, Fernanda Vieira lattes
Orientador(a): Ruiz, Duncan Dubugras Alcoba lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Faculdade de Informáca
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/5065
Resumo: As organizações de software buscam, cada vez mais, aprimorar seu Processo de Desenvolvimento de Software (PDS), com o intuito de garantir a qualidade dos seus processos e produtos. Para tanto, elas adotam modelos de maturidade de software. Esses modelos estabelecem que a mensuração da qualidade seja realizada através de um programa de métricas (PM). As métricas definidas devem ser coletadas e armazenadas, permitindo manter um histórico organizacional da qualidade. Contudo, apenas mensurar não é o bastante. As informações armazenadas devem ser úteis para apoiar na manutenção da qualidade do PDS. Para tanto, os níveis mais altos dos modelos de maturidade sugerem que técnicas estatísticas e analíticas sejam utilizadas, com a finalidade de estabelecer o entendimento quantitativo sobre as métricas. As técnicas de mineração de dados entram neste contexto como uma abordagem capaz de aumentar a capacidade analítica e preditiva sobre as estimativas e o desempenho quantitativo do PDS. Este trabalho propõe um método para a execução do processo de KDD (Knowledge Discovery in Database), denominado de SPDW-Miner, voltado para a predição de métricas de software. Para tanto, propõe um processo de KDD que incorpora o ambiente de data warehousing, denominado SPDW+. O método é composto por uma série de etapas que guiam os usuários para o desenvolvimento de todo o processo de KDD. Em especial, em vez de considerar o DW (data warehouse) como um passo intermediário deste processo, o toma como ponto de referência para a sua execução. São especificadas todas as etapas que compõem o processo de KDD, desde o estabelecimento do objetivo de mineração; a extração e preparação dos dados; a mineração até a otimização dos resultados. A contribuição está em estabelecer um processo de KDD em um nível de detalhamento bastante confortável, permitindo que os usuários organizacionais possam adotá-lo como um manual de referência para a descoberta de conhecimento.