Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Thomaz, Raquel Silva |
Orientador(a): |
Papaléo, Ricardo Meurer |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais
|
Departamento: |
Faculdade de Engenharia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/5905
|
Resumo: |
In this study the spatial confinement effects on the topological (mass transport and particle ejection) and chemical modifications of poly(methyl methacrylate) thin films (1<ℎ<360 nm) irradiated by swift heavy ions were systematically investigate. The surface tracks dimensions were characterized by atomic force microscopy and the results show that the surface effects are weakened when the length of the ion track is spatially confined down to few nanometers. The deviation from bulk-like behavior starts at a critical thickness ℎ1 as large as ~40 nm to the ridge volume, due to effects associated to cooperative action of excited material along the track. However, ℎ1 is much smaller for effects related to events close to the surface, such as the crater size (ℎ1~10 nm). Analytical calculations based on the pressure pulse model were carried out to investigate theoretical aspects of the ion-matter energy transfer in the transport and dissipation of the deposited energy. The results obtained from these calculations match the experimental observations. Chemical modifications were investigated by quantifying bond breaking rates, extracted by x-ray photoelectron spectroscopy. Cross sections for carbon-oxygen bonds for films under Bi irradiation are slightly smaller for thinner films, whilst for proton irradiation the values do not show substantial difference down to the smallest thickness viable for analysis (ℎ~5 nm). From these set of data it is verified that the ionic irradiation effects on polymer thin films are weakened under spatial confinement into layers with ℎ below a certain critical value ℎ1, dependent on the probed effect. Substantial difference on the surface track dimensions were not observed between the distinct substrates investigated. |