Um modelo híbrido para o WSD em biomedicina

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Goulart, Rodrigo Rafael Vilarreal lattes
Orientador(a): Lima, Vera Lúcia Strube de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Faculdade de Informáca
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/5221
Resumo: This work studies Word Sense Disambiguation (WSD) in the Biomedicine domain for English language, using external knowledge sources. Among the existing proposals for the selection of a sense for an ambiguous word, there is the graph-based approach. This approach uses a metric in the evaluation of graphs containing candidates to the correct sense for the ambiguous word. In this research, a set of metrics is analyzed individually, and, based on this evaluation, we propose a hybrid model for the selection of the metrics in order to determine the most adequate metric to be employed. The model makes use of a set of features and heuristics that determine a semi-supervised solution for WSD. The results obtained with experiments show an improvement in performance and reveal new perspectives of research. The proposed model raises the hit rate to 68,48%, increasing significantly in 3,52% the rate reported in literature