Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Salvi, Andrey de Aguiar
 |
Orientador(a): |
Barros, Rodrigo Coelho
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/9890
|
Resumo: |
Aprendizado Profundo é o estado da arte em tarefas de Visão Computacional, tais como Classificação de Imagens, Detecção de Objetos, Segmentação de Instâncias, Geração de Conteúdo, entre outros. Ao longo do tempo, os modelos se tornaram maiores, mais profundos, e de maior acurácia, mas também super-parametrizados, pesados e lentos, dificultando o uso de tais modelos em automação de processos em dispositivos limitados, com poder de processamento reduzido, memória, ou energia. Consequentemente, a Compressão de Modelos emergiu na literatura para reduzir o tamanho do modelo e o custo de processamento o máximo possível, impactando o mínimo possível na performance do modelo na tarefa alvo. Embora existam muitos estudos de compressão de modelos na literatura versando sobre diferentes abordagens, existem poucos estudos trazendo comparações práticas entre diferentes abordagens, e nenhum deles com o foco em Detecção de Objetos. Portanto, este trabalho contribui à literatura ao comparar e explorar os trade-offs existentes entre Pruning, Knowledge Distillation (KD), Neural Architecture Search (NAS), e uma reconstrução de modelo baseada em convoluções eficientes. Para alcançar tal objetivo, modelos baseados na YOLOv3 foram treinados com a mesma estratégia de data-augmentation em dois conjuntos de dados, PASCAL VOC e Exclusively Dark Images, e avaliados de acordo com Mean Average Precision, número de parâmetros, tamanho de armazenamento, e Multiply-Accumulate Operation (MAC). Os resultados mostram que um Pruning mais agressivo foi capaz de gerar o melhor trade-off, onde o seu mAP ultrapassou a abordagem de NAS + KD, além de produzir um modelo com o menor número de parâmetros e com a maior redução efetiva em MACs. |